Всё для надежной сварки
Печатная версия материала с сайта svarkainfo.ru - портала о сварке. При использовании материалов с сайта, пожалуйста, всегда указывайте источник или гиперссылку.
показать меню

Главная / Библиотека / Технологии сварки / Сварка химически активных тугоплавких металлов (циркония, ниобия, тантала, молибдена и др.)

Технологии сварки

Сварка химически активных тугоплавких металлов (циркония, ниобия, тантала, молибдена и др.)

В связи с развитием новых отраслей техники расширяется применение тугоплавких металлов и сплавов на их основе: циркония, ниобия, тантала, молибдена и др. Эти металлы обладают высокой жаропрочностью, коррозионной стойкостью в ряде агрессивных сред и другими специальными свойствами.

При сварке тугоплавких металлов возникают серьезные затруднения, вызываемые их высокой температурой плавления, большим сродством к газам атмосферы при повышенных температурах, охрупчивающим действием этих газов (прежде всего кислорода), склонностью к росту зерен при нагреве и др.

На основании выполненных за последние годы исследований свариваемости таких металлов их можно условно разделить на две группы. В первую группу удовлетворительно сваривающихся плавлением металлов можно отнести цирконий, ниобий, тантал и ванадий. Металлы второй группы — молибден, вольфрам и хром — свариваются значительно хуже. Сварные соединения этих сплавов весьма склонны к образованию трещин, малопластичны при нормальной температуре.

Сплавы на основе тугоплавких металлов, полученные методом порошковой металлургии, плохо свариваются: в швах образуются поры, сварные соединения склонны к образованию трещин. Поэтому для сварных конструкций применяют металлы и сплавы, выплавленные в контролируемой атмосфере инертных газов (дуговой метод плавки) или в вакууме (электроннолучевой метод плавки). Уменьшение содержания вредных примесей в исходном металле - одна из основных задач металлургии химически активных тугоплавких металлов. Весьма важно в процессе сварки исключить загрязнение металлов примесями внедрения. Поэтому для соединения рассматриваемых металлов применяют методы электродуговой сварки в среде инертных газов, главным образом в камерах с контролируемой атмосферой, и электроннолучевую сварку.

Дуговую сварку неплавящимся электродом выполняют постоянным током прямой полярности. Повышенные требования предъявляются к чистоте инертных газов. Перед заполнением камер газ подвергают очистке от влаги пропусканием через сили-кагель марки КСМ и ШСМ (ГОСТ 3956—54) и алюмогель. Применяют также разные методы дополнительной очистки газа от кислорода, из которых наиболее простой — пропускание газа через нагретую до температуры 900—1000° С титановую стружку или губку.

Для тугоплавких металлов в ряде случаев отдают предпочтение гелию, так как при гелие-дуговой сварке эффективная мощность дуги значительно больше, чем при сварке в среде аргона. Помимо этого содержание вредных примесей — газов в гелии может быть доведено при очистке до меньших величин, чем при очистке аргона. Чтобы избежать загрязнения шва, сварку, как правило, выполняют неплавящимся электродом без присадки. Поэтому применение находят в основном стыковые и нахлесточ-ные соединения без разделки кромок. При сварке вне камеры необходимы специальные устройства для защиты зоны сварки, остывающих участков шва и околошовной зоны, а также обратной стороны шва.

Так как наиболее совершенная защита шва от газов атмосферы достигается при электроннолучевой сварке в вакууме, этот метод наиболее эффективен для соединения химически активных тугоплавких металлов. Большое значение имеют также и другие преимущества данного метода и в первую очередь возможность получения узких зон расплавления и термического влияния и благодаря этому малых деформаций.

Так, при электроннолучевой сварке молибдена ширина шва в 2—2,5 раза меньше, чем при дуговой сварке неплавящимся электродом (табл. 11-17). Электроннолучевую сварку выполняют при давлении в рабочем объеме камеры не выше 10~5—10~4 мм рт. ст. Предпочтения заслуживают системы откачки с безмасляными вакуумными насосами (например, титановыми).

Подготовка деталей из тугоплавких металлов под сварку требует особой тщательности. Соединяемые кромки и прилегающие к ним околошовные участки до сварки необходимо очищать от загрязнений и подвергать травлению в специальных реактивах для удаления поверхностных пленок окислов и обезжиривания. Так как расслоения на кромках могут служить источником дополнительных загрязнений сварного шва, кромки необходимо тщательно осматривать и удалять шлифованием обнаруженные расслоения. Должны быть обеспечены минимальные зазоры и смещения кромок.

Во многих случаях существенное влияние на качество швов оказывает тепловложение при сварке. В связи с этим для каждого изделия в зависимости от типа соединения и толщины металла следует выбирать оптимальные параметры процесса сварки.

Сварка циркония. Цирконий по свариваемости близок к титану. Поэтому для него применимы та же техника сварки и практически те же режимы, что и для титана. Перед сваркой кромки деталей подвергают травлению в растворе, состоящем из 45% HNO3, 10% HF и 45% Н2О.

Таблица 11-17. Размеры структурных участков соединения из молибдена толщиной 3 мм, сваренного разными способами

Сварка Максимальная ширина участка, мм Общая ширина участков металла, претерпевших структурные изменения
Шов Околошовная зона
Электродуговая неплавящимся электродом
Электроннолучевая
4,2
1,5
2,1
0,8
8,4
3,1

Прочность соединений из технического нелегированного циркония близка к таким же свойствам основного металла. Однако пластические свойства швов на цирконии и особенно его сплавах, выполненных автоматической дуговой сваркой в среде инертного газа без присадки, заметно снижаются по сравнению с пластичностью металла.

Сварка ниобия. Для обеспечения удовлетворительной свариваемости ограничивают содержание в металле вредных примесей — газов. Так, в сплаве ВН-2АЭ, выплавленном электроннолучевым методом (Мо —3,5—4,7%; Zr —0,5—0,9%; Nb —основа), допускается следующее предельное содержание примесей (% по массе): 0,02О2; 0,03N2; 0,005H2. Травление кромок перед сваркой производят в реактиве следующего состава: 22% HF; 8% HNO3; 15% H2SO4; 55% Н2О.

Технология сварки тантала. Для очистки кромок тантала перед сваркой хорошие результаты дает травитель: 90% HF и 10% HNO3. При сварке плавлением технического тантала и некоторых его сплавов с ниобием, ванадием и вальфрамом сварные соединения получаются пластичные и равнопрочные с основным металлом. Режимы сварки тантала приведены в табл. 11-20.

Таблица 11-20. Режимы автоматической сварки тонколистового тантала неплавящимся электродом

Толщина металла, мм Диаметр электрода, мм Iсв, А Uд, В υсв, м/ч Расход аргона, л/мин
на зону сварки на обратную сторону шва
0,3
0,5
1,0
1,5
1,0
1,0
1,5
1,5
45-60
70—80
130—140
160—180
8—10
8—10
10—12
12—14
35—40
30—35
25—30
25-30
12-14
12—14
14—16
14—16
3—4
3—4
4—5
4—5

Прочность сварного шва тонколистового технического тантала (толщиной 1,5—2 мм) составляет около 50 кгс/мм2 при угле изгиба 180°.

Сварка ванадия. Прочность сварных швов технического ванадия и некоторых его сплавов (например, V — 12% W) близка к прочности основного металла. Угол изгиба основного металла и сварного соединения 180°.

Технология сварки молибдена и его сплавов. Перед сваркой кромки деталей из молибдена подвергают травлению в растворе фосфорной и азотной кислот (1 : 1), разбавленном водой до плотности 1,37—1,38. Молибденовые сплавы, свариваемые плавлением, должны содержать кислорода не более 0,001% по массе.

При сварке плавлением технического молибдена сварные швы имеют крупнокристаллическое строение, что обусловливает их хрупкость. Склонность сварных швов молибдена к хрупкому межкристаллитному разрушению при нормальных температурах может быть существенно уменьшена путем легирования их определенными элементами в количествах, достаточных для создания пересыщенного твердого раствора при высоких температурах и выделения второй мелкодисперсной фазы в процессе кристаллизации сварного шва.

Поэтому для сварных изделий применяют только низколегированные сплавы на основе молибдена с добавками элементов, раскисляющих и модифицирующих металл (углерода, циркония, титана, ванадия, ниобия и др.).

Прочность сварных швов молибдена, как правило, ниже прочности основного металла. Повышение прочности и пластичности металла шва достигается применением легированной присадки, например из сплава 50% Мо — 50% Re.

Пластичность сварных соединений из известных молибденовых сплавов при нормальной температуре невелика. Так, например, угол изгиба соединения из сплава ВМ1 толщиной 1 мм не превышает 60°. При повышении температуры пластичность соединений возрастает.

Весьма сложной задачей является получение достаточно пластичных соединений при сварке плавлением молибденовых сплавов с критической температурой перехода швов в хрупкое состояние, близкой к такому же показателю для основного металла. Для ее решения идут, с одной стороны, по пути создания удовлетворительно свариваемых сплавов на основе молибдена, обладающих повышенной пластичностью и вязкостью и в минимальной степени загрязненных вредными примесями — газами, и с другой, по пути изыскания оптимальных условий сварки таких сплавов, включающих выбор термических циклов сварки, присадочных материалов и др.

Сварка вольфрама. Сварные соединения вольфрама при нормальной температуре хрупки и весьма склонны к образованию трещин. Поэтому сварку выполняют с предварительным подогревом основного металла до температуры не менее 500° С. Чтобы предупредить образование трещин, детали рекомендуется сваривать без их жесткого закрепления. Пластичность сварных соединений вольфрама можно несколько повысить после термообработки: нагрев до температуры 1800° С, выдержка 1 ч, охлаждение с печью.

Сварка хрома. При нормальной температуре сварные соединения малопластичны. Временное сопротивление соединений тонколистового технического хрома (δ = 1-2 мм) достигает 30 кгс/мм2 (прочность основного металла около 40 кгс/мм2) при относительном удлинении до 7%. При электроннолучевой сварке хрома встречаются затруднения вследствие сильной возгонки хрома в вакууме, что вызвано высокой упругостью его паров, достигающей при плавлении около 60 мм рт. ст. В связи с этим для сварки хрома требуется создавать разрежение в камере с давлением не выше (6-8)*10-6 мм рт. ст.

Источник: Технология электрической сварки металлов и сплавов плавлением. Под ред. акад. Б.Е. Патона. М., Машиностроение, 1974